Regulating forces of rocky shore assemblages in the seasonal tropics

Jackson Wai Ting LAU, Tin Yan HUI, Gray A. WILLIAMS

The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong

Species	Echinolittorina malaccana – Lottia dorsuosa –						Highsl	nore		
	Echinolittorina vidua –									
	Cellana grata –									
	Nerita chameleon –						Midshore			
	Nerita polita –									
	Planaxis sulcatus –									
	Monodonta labio –						Tidal			
	Cellana toreuma –									
	Clypeomorus bifasciata –									
	Nerita albicilla –					Low	shore			
	Reishia clavigera –									
	Lunella coronata –									
	Tenguella musiva –				_					
	4	0	45	_	50	Ę	55	6	0	
© Adrian Wong		Upper thermal limit (°C)								

Regulating forces of rocky shore assemblages in the seasonal tropics

Jackson Wai Ting LAU, Tin Yan HUI, Gray A. WILLIAMS

The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong

Is temperature an important driving force on the seasonal tropical rocky shore assemblages?

Mensurative approaches to study the drivers

Spatial variation

Time

Temporal variation

Physical filters & spatial variation

- \rightarrow 24 sites
- \rightarrow 6 tidal heights
- Mobile species count
- Sessile species % cover
- Shore aspects (slope, orientation, etc.)
- Algal biomass (chl a)
- Seawater quality

Enriched freshwater \rightarrow Pearl River ortheastern

Physical filters & spatial variation

- 1. No pattern in species richness
 - \rightarrow across geographical regions
 - \rightarrow along the environmental gradients

Physical filters & spatial variation

• 2. High beta diversity (great change in species composition)

Physical filters & spatial variation

- 1. Wave explained most of the beta diversity
- 2. Rock temperature was also important

* p < 0.05

Spatial pattern of the seasonal tropical rocky assemblages (Hong Kong)

Spatial variation

1. No sig. diff in no. of species

2. High variation in composition (i.e. high beta diversity)Due to:

 \rightarrow Wave

 \rightarrow Temperature

 \rightarrow Water nutrient

What drives temporal variation?

Spatial variation

Time

Temporal variation

Drivers of the temporal dynamics

- 3 sites
- Monthly surveys
- Mobile species count
- Sessile species % cover
- Algal biomass (chlorophyll *a*)

Drivers of the temporal dynamics (Site A)

G = grazer

P = predator

Dec 2020 May 2021 Oct 2021 Mar 2022 Aug 2022

Drivers of the temporal dynamics (Site A)

Dec 2020 May 2021 Oct 2021 Mar 2022 Aug 2022

Site B

Dec 2020 May 2021 Nov 2021 May 2022 Nov 2022

Dec 2020 May 2021 Nov 2021 May 2022 Nov 2022

Site C

Take home messages

Spatial variation

Wave + Temperature

Temperature (heat stress?)

Heat stress = predator?

Time

Temporal variation

Acknowledgements

- Environment and Conservation Fund (ECF 2019 105)
- Department of Civil Engineering
- Tropical IntertiDal Ecology Group members
- Dr. Toby Tsang

