Understanding Cause and Consequence of Change in Benthic Marine Ecosystems

Craig Johnson¹ and Steve Dudgeon²

¹-Institute for Marine and Antarctic Studies, University of Tasmania

²-Department of Biology, California State University, Northridge

Ecologists usually view continuous and discontinuous phase shifts as mutually exclusive possibilities

Continuous Phase Shift

Environmental condition

Discontinuous Phase Shift

Environmental condition

Images used with permission of P. Petraitis

Petraitis (2013) Multiple Stable States in Natural Ecosystems

Both can occur within a single model; known as a cusp catastrophe

Discontinuous phase shift can represent large challenges for management

Urchins

Models reveal systems with 3 alternative stable states

Fung, Seymour & Johnson (2011) Ecology 67: 967-982

The butterfly catastrophe: 1-3 stable states

Photo credits P. Petraitis

A changing seascape

Petraitis & Dudgeon (2015) *Mar Freshwat Res* 67: 37-46 Petraitis & Dudgeon (2020) *Communications Biol* 3: 591-597

Challenges to understanding community change

- 1. Distinguishing between:
 - long transient stages and stable states
 - continuous and discontinuous phase shifts
- 2. Early Warning Signals are not unique to discontinuous phase shifts (EWS critical slowing down, anomalous variance, autocorrelation, non-linearity)
- 3. Occurrence of hysteresis and divergence, and predictive value of EWS, depend on environmental and system "noise" (i.e. the time convention)
- 4. Difficulties of measurement & interpretation (e.g. rapid shifts can occur with both phase shift types, catastrophic shifts may occur very slowly, sample sizes for EWS prohibitive)
 - how to interpret observed change? 'normal' fluctuation or phase shift?

The Ecologists Conundrum: How to interpret change in community structure?

- Easy to *observe* change, but how do you *interpret* it?
- How to distinguish 'normal' fluctuations in dynamics from phase transition?
- Critical Length Scales (CLSs) appear to be a good candidate ...
 - CLS can be determined from any one species in a system of interacting species
 - o the CLS does not change if a system fluctuates within a single basin of attraction
 - o if there is a phase shift the CLS will change
 - CLS can be calculated from 1-D (line transect) or 2-D (maps) spatial data using short time series (e.g. 3 time steps) and/or sliding windows across space (i.e. substituting space for time)

Calculating the CLS

Calculating the CLS – substituting space for time to estimate the attractor

Time

Sliding windows

Map from a single time *t*

Habeeb, Trebilco, Wotherspoon & Johnson (2005) Ecol Monogr 75: 467-487

Example – subtidal rock wall community

Johnson, Chabot, Marzloff & Wotherspoon (2017) *Restoration Ecol* 25: 140-147

Model 1: Oscillating dynamics (single attractor)

CLS constant @ ~35 units

Johnson (2009) Ecol & Society 14(1): 7. (21 pp)

Model 2: Fundamental change in underlying dynamics (shift in attractor) (20 species system)

Johnson (2009) Ecol & Society 14(1): 7. (21 pp)

Empirical example: Coral reef community at Blue Bowl, Wakatobi Marine National Park, Sulawesi, Indonesia

- CLS from 1-D line transects (60 m, 1 cm resolution)
- Transition from coral to algal dominated 2007-2010

Ward, Wotherspoon, Melbourne-Thomas, Haapkyla, Johnson (2018) *Ecol Monogr* 88: 694-715

Challenges to understanding community change

- 1. Distinguishing between:
 - long transient stages and stable states
 - continuous and discontinuous phase shifts
- 2. Early Warning Signals are not unique to discontinuous phase shifts (EWS critical slowing down, anomalous variance, autocorrelation, non-linearity)
- 3. Occurrence of hysteresis and divergence, and predictive value of EWS, depend on environmental and system "noise" (i.e. the time convention)
- 4. Difficulties of measurement & interpretation (e.g. rapid shifts can occur with both phase shift types, catastrophic shifts may occur very slowly, sample sizes for EWS prohibitive)
 - how to interpret observed change? 'normal' fluctuation or phase shift?

Thank You!

Photo credit: Justin Gilligan