Tropicalized structure and functioning of a cool-temperate reef ecosystem in a hotspot of warming

Matthew Rose, German Soler, Kate Fraser, Graham Edgar, Scott Ling

Documented

Impact

Realised (Ling

2008)

Ni

Ni

Ni

Ni

Ni

Ni

Ni Ni

Ni

Ni

Ni

Ni

Ni

Ni

Ni

Nil

Ni

Tropicalization at a high latitude?

- Warming rates 3-4x faster than global averages
- Approximately 45 reef-associated range-extending species observed
- Which species have the greatest influence?

145 146 147 148 149 150

ongitude F

ITRS 2023 Matthew Rose Are tropicalizing Northeastern Tasmanian reefs now structurally and functionally equivalent to NSW?

Experimental Design

	Taxonomic Biomass	Latitudinal Equivalence		Functional Group Biomass	Latitudinal Equivalence
V I	Fish	ish	V	Fish	
H	Kelp Bed	NO	H	Kelp Bed	YES
	Unvegetated	NO		Unvegetated	YES
V	Benthic		V	Benthic	
L H	Kelp Bed	NO	Lass H	Kelp Bed	YES
	Unvegetated	YES		Unvegetated	YES

Function - Herbivory

Total Herbivory Vs. Orientation*Habitat

Location P = 0.027182

Predicting Function From Structure

Centrostephanus Biomass g/100m^2

- Urchins are primary driver of herbivory
- **Bioindicator**

Concluding Points

- Equivalence in community structure, functional community structure and measured patterns of herbivory on unvegetated reefs b/w NE Tas and NSW
- Therefore tropicalised unvegetated Tasmanian reefs are structurally and functionally equivalent to NSW reefs
- Coastwide resurvey of eastern Tas reefs showed an increase from 3% to 15% unvegetated, tropicalised reef-scape in the past 15 years (Ling & Keane 2018)
- *Centrostephanus* is the primary driver of ecosystem function, should therefore be utilised as a bioindicator in Tas and NSW

Acknowledgements

ARC Discovery Project 2017 "Human impacts on marine herbivores that contribute to degradation of reef ecosystems"; G. Edgar, S. Ling, A. Hoey, E. Duffy

Reef Life Survey

Redmap

Divers: Scott Ling John Turnbull Kate Fraser John Keane Gabby Walley German Soler Lizzi Oh Martin Puchert Louise de Beuzeville

Discussions Rick Stuart-Smith and Freddie Heather

Questions?

		Total: Model explained 69.92%		Vertical: Model Insignificant			Horizontal:	Model explai	ned 81.80%	Benthic: Model Explained 82.47%			
Functional Group	Species	Img	Predicted	Observed	Img	Predicted	Observed	Img	Predicted	Observed	Img	Predicted	Observed
	C. rodgersii	0.42	60.38%	89.34%	0.00	0.00%	0.00%	0.39	48.44%	89.34%	0.47	56.72%	89.34%
Benthic Grazing	H. erythrogramma	0.00	0.00%	7.38%	0.00	0.00%	0.00%	0.00	0.00%	7.38%	0.00	0.00%	7.38%
and Scraping Herbivores	Amblypneustes spp.	0.02	3.33%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
(2/5 Predicted; 2/5 Observed)	P. parvispinus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.07	8.31%	0.00%	0.13	16.09%	0.00%
	T. alexandri	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.02	3.02%	0.00%	0.02	2.82%	0.00%
	T. undulatus	0.06	9.41%	0.00%	0.00	0.00%	0.00%	0.06	7.88%	0.00%	0.06	7.78%	0.00%
Benthic Grazing Herbivores	T. torquatus	0.00	0.00%	0.82%	0.00	0.00%	0.00%	0.01	1.01%	0.00%	0.00	0.00%	0.82%
(2/5 Predicted; 2/5 Observed)	A. dactylomela	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.07	8.93%	0.00%
	H. rubra	0.00	0.00%	2.46%	0.00	0.00%	0.00%	0.04	5.18%	2.46%	0.07	8.13%	2.46%
	D. auricularia	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Benthic Deposit Feeding Omnivores	A. tentoriiforme	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Feeding Omnivore													
(0/2 Predicted; 0/2 Observed)	Pagurid spp.	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Benthic Predatory	N. tuberculosus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
and Grazing Omnivorew													
(0/2 Predicted, 0/2 Observed)	H. elatus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Grazing Herbivores													
(1/1 Predicted; 0/1 Observed)	M. immaculatus	0.19	28.22%	0.00%	0.00	0.00%	0.00%	0.16	20.23%	0.00%	0.00	0.00%	0.00%
	P. microlepis	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Browsing Herbivores	A. lophodon	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
(0/5 Predicted; 0/5 Observed)	O. cyanomelas	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	A. vittiger	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	M. trachylepis	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Predatory and	C. truncatus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
Browsing Omnivore	Z. cornutus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
(0/3 Predicted; 0/3 Observed)	H. australis	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	Predicited to have a s	ignificant	contribution	n to explain	ed mode	el variation	(P<0.05).						
	Contributed to mode	l variation	explained b	out weren't	observe	d in field, o	r were obse	erved in fiel	d but weren't	predicted fo	r in regres	ion model.	

Final Honours Seminar Matthew Rose

Introduction Aims

Aims & Hypotheses

Methods Design

- Photo-quadrats
- Habitat structure (macroalgage/ sponges/CCA).
- Kelp beds same across location...therefore good logic to compare them
- Differences in barrens, > turfing algae in NSW barrens, > CCA in Tas.
 Perhaps driven by mesograzers. But same in regards to lack of macroalgae cover, therefore good logic to compare.

Structure

Univariate:

- > biomass centros on barrens (same across locations)
- > biomass helios in kelp beds (same across locations)
- > Olisthops cyanomelas biomass in Tas, in kelp beds (range-extender)
- > Parma microlepis biomass on barrens, associating with coral reef-like habitat structure.

Final Honours Seminar Matthew Rose

Aims & Hypotheses

Methods D

Design

Analyses

Inferred Function

Univariate:

- Benthic Grazing and Scraping Herbivores Biomass > Barrens, same across locations.
- Planktivore biomass > in Tas, concentrated on barrens

Final Honours Seminar Matthew Rose

Introduction

Aims & Hypotheses

Methods De

Design Results

4-way ANOVA Testing Herbivory

					5	\Rightarrow	\times
	Df	Sum Sq	Mean Sq	F value	Pr(>F)		
Location	1	0.420	0.420	5.032	0.027182	×	
Habitat	1	3.583	3.583	42.980	2.77e-09	**	
Orientation	1	5.665	5.665	67.949	8.67e-13	***	
AssaySpecies2	2	0.783	0.392	4.697	0.011320	ŵ.	
Location:Habitat	1	0.042	0.042	0.506	0.478695		
Location:Orientation	1	0.294	0.294	3.525	0.063476		
Habitat:Orientation	1	1.253	1.253	15.023	0.000194	<u>жж</u>	
Location:AssaySpecies2	2	0.106	0.053	0.638	0.530529		
Habitat:AssaySpecies2	2	0.222	0.111	1.332	0.268666		
Orientation:AssaySpecies2	2	0.057	0.029	0.344	0.709761		
Location:Habitat:Orientation	1	0.195	0.195	2.337	0.129650		
Location:Habitat:AssaySpecies2	2	0.220	0.110	1.321	0.271584		
Location:Orientation:AssaySpecies2	2	0.092	0.046	0.553	0.577098		
Habitat:Orientation:AssaySpecies2	2	0.005	0.003	0.030	0.970141		
Location:Habitat:Orientation:AssaySpecies2	2	0.073	0.036	0.437	0.647040		
Residuals	96	8.004	0.083				

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Measured Function – each marcoalgae species Tested against Location*Habitat*Orientation AB В Sargassum **Ecklonia Ulva - Standard** 1.0 1.0 1.0 Consumption % Ecklonia Consumption % 0.4 % 0.2 0.8 % Standard Consumption 0.8 0.6 0.6 0 % Sargassun 0.4 0.4 0.2 0.2 0.0 0.0 0 0.0 V.B.NSW H.B.NSW H.KB.NSW V.KB.NSW V.B.NSW V.KB.NSW H.B.NE Tas V.B.NE Tas HKB.NE Tas V.KB.NE Tas H.B.NSW H.KB.NSW H.B.NE Tas V.B.NE Tas /.KB.NE Tas HKB.NE Tas H.B.NSW V.B.NSW H.KB.NSW V.KB.NSW H.B.NE Tas B.NE Tas HKB.NE Tas KB.NE Tas Habitat*Orientation = 0.011 Location = 0.043Habitat*Orientation = 0.042 Habitat = 0.005 Orientation = 0.0004 INCREASING PALLETABILITY

Final Honours Seminar Matthew Rose

Introduction

Aims & Hypotheses

Methods

s Design

Results

Conclusion

Tropicalisation

- Poleward range-extensions of thermal range niches (Parmesan, C. & Yohe, G., 2003 Pecl et al., 2017; Stuart-Smith et al., 2017)
- Reef community structure
- Change in ecosystem function

Tropicalisation around the globe

- Occurring globally
- Rabbitfish
- Drummer
- Overlaps with hotspots
- Tropicalisation at high latitudes?

(Re-drawn from Hobday and Pecl, 2014)

ITRS 2023 Matthew Rose

Introduction

Aims & Hypotheses

Latitude

Methods

Design

Oceans as a heat sink

- Temperature
- Changing ocean currents
- Hotspots
- Novel species interactions

(Re-drawn from Hobday and Pecl, 2014)

Results

Conclusion

IMAS

UNIVERSITY O

Final Honours Seminar Matthew Rose

Introduction

Aims & Hypotheses

Methods D

Design

Results

C. rodgersii biomass by Total Herbivory

Jure	>1nx
Ľά	íe.
St	
	X
Measu	rec

Tell this story using the correlation plot of centro biomass to reduce stuff on screen

			Total: Mo	del explain	ed 69.92%	Vertical:	Model Insi	gnificant	Horizontal:	Model explai	ned 81.80%	Benthic:	Model Expla	ained 82.47%
	Functional Group	Species	Img	Predicted	Observed	Img	Predicted	Observed	Img	Predicted	Observed	Img	Predicted	Observed
ה ה		C. rodgersii	0.42	60.38%	89.34%	0.00	0.00%	0.00%	0.39	48.44%	89.34%	0.47	56.72%	89.34%
5	Benthic Grazing	H. erythrogramma	0.00	0.00%	7.38%	0.00	0.00%	0.00%	0.00	0.00%	7.38%	0.00	0.00%	7.38%
ζ	and Scraping Herbivores	Amblypneustes spp.	0.02	3.33%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	(2/5 Predicted; 2/5 Observed)	P. parvispinus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.07	8.31%	0.00%	0.13	16.09%	0.00%
		T. alexandri	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.02	3.02%	0.00%	0.02	2.82%	0.00%
		T. undulatus	0.06	9.41%	0.00%	0.00	0.00%	0.00%	0.06	7.88%	0.00%	0.06	7.78%	0.00%
	Benthic Grazing Herbivores	T. torquatus	0.00	0.00%	0.82%	0.00	0.00%	0.00%	0.01	1.01%	0.00%	0.00	0.00%	0.82%
	(2/5 Predicted; 2/5 Observed)	A. dactylomela	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.07	8.93%	0.00%
		H. rubra	0.00	0.00%	2.46%	0.00	0.00%	0.00%	0.04	5.18%	2.46%	0.07	8.13%	2.46%
nσ		D. auricularia	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
16	Benthic Deposit Feeding Omnivores	A. tentoriiforme	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
lots	Feeding Omnivore													
	(0/2 Predicted; 0/2 Observed)	Pagurid spp.	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
5	Benthic Predatory	N. tuberculosus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	and Grazing Omnivorew													
	(0/2 Predicted, 0/2 Observed)	H. elatus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	Grazing Herbivores													
	(1/1 Predicted; 0/1 Observed)	M. immaculatus	0.19	28.22%	0.00%	0.00	0.00%	0.00%	0.16	20.23%	0.00%	0.00	0.00%	0.00%
		P. microlepis	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	Browsing Herbivores	A. lophodon	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	(0/5 Predicted; 0/5 Observed)	O. cyanomelas	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
		A. vittiger	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
		M. trachylepis	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	Predatory and	C. truncatus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
	Browsing Omnivore	Z. cornutus	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
-	(0/3 Predicted; 0/3 Observed)	H. australis	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%
		Predicited to have a si	ignificant	contributio	n to explain	ed mode	l variation (P<0.05).						
		Contributed to model variation explained but weren't observed in field, or were observed in field but weren't predicted for in regresion model.												

Final Honours Seminar Matthew Rose

Introduction

Methods Design

Methods

- Two geographic regions; spanning mid-latitude temperate to high-latitude cold temperate.
- 5 Kelp bed habitats and 5 unvegetated reef habitats within each location.
- Structure and function within these habitat types was compared between locations.

ITRS 2023 Matthew Rose

Aims & Hypotheses

Methods

Design

Methods

- 10 stakes per orientation at each habitat within each location.
- Herbivory: 2 x 7cm pieces, Assayed at 1-hour and 24-hour mark.
- Carnivory tested using dried squid

ITRS 2023 Matthew Rose

Aims & Hypotheses

Methods

Design

Methods

- 10 stakes per orientation at each habitat within each location.
- Herbivory: 2 x 7cm pieces, Assayed at 1-hour and 24-hour mark.
- Carnivory tested using dried squid

ITRS 2023 Matthew Rose

Aims & Hypotheses

Methods

Design

Analytical Methods

Overarching Question

• Are tropicalising North eastern Tasmanian reefs now structurally and functionally equivalent to NSW?

- Compared the community structure in regards to species biomass and biomass of species functional groups.
- Location*Habitat

- For herbivory a 4 way ANOVA was used testing Location*Habitat*Orientation*Algal Species
- Multiple regression to investigate if I could then predict function from structure

Results

• Carnivory was tested; no significant variation

ITRS 2023 Matthew Rose

Introduction

Aims & Hypotheses

Methods

Design

Results

MDS + PERMANOVA

ITRS 2023 Matthew Rose

Introduction Aims & Hypotheses

Methods Design

gn Results

Aims & Hypotheses

Overarching Aim

Hypotheses

H₃ =The grant is at the trive of the first of the first

