

Socio-ecological challenges in managing overabundant urchins on temperate reefs

Stephen Swearer¹, Paul Carnell², Rebecca Morris¹, Tristan Graham¹, Fletcher Warren-Myers¹, Tim Dempster¹

¹University of Melbourne, ²Deakin University

The Problem

Widespread loss of canopy-forming macroalgae

Young et al. 2022 Diversity & Distributions

The Problem

Ecklonia radiata

Young et al. 2022 Diversity & Distributions

The Problem

Phyllospora comosa

Young et al. 2022 Diversity & Distributions

The Cause?

The Reef Ecosystem Evaluation Framework: Managing for Resilience in Temperate Environments

July 2015

In partnership with:

Report produced by: Craig R. Johnson¹, Stephen E. Swearer², Scott D. Ling¹, Simon Reeves¹, Nina Kriegisch¹, Eric A. Treml², John R. Ford², Emily Fobert², Kerry P. Black², Kim Weston¹, and Craig D. H. Sherman³

1. Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, IMAS Waterfront Building, 20 Castray Esplanade, Battery Point TAS 7004, Australia.

2. School of BioSciences, University of Melbourne, Building 147, Parkville, VIC 3010, Australia.

 School of Life and Environmental Sciences, Deakin University, Geelong Waum Ponds Campus, Pigdons Road, Geelong, VIC 3217, Australia.

S. Ling

2011 - 2015

		1	Decologia (2018) 188:1239- https://doi.org/10.1007/s00	9–1251 00442-018-4275-3	
			GLOBAL CHANGE	ECOLOGY – ORIGINAL RESEARCH	(
ELSI Top- kelp	RESEARCH ARTICLE Phase-Shift Dynamics of Sea Overgrazing on Nutrified Ree	Urchin fs ^{Oik}	Oikos 125: 1273–1283, 2 doi: 10.1111/oik.02 os © 2016 Nordic Society O tte. Accepted 18 November 2	 ²⁰¹⁶ ice to sediment-trapping turfs with decline of native ²⁰¹⁶ hment of an exotic kelp ²⁰¹⁵ hment of an exotic kelp 	e
Krieg	Nina Kriegisch*, Simon Reeves, Craig R. Johnson, Scott	D. Ling		h ¹ · C. R. Johnson ¹ · S. D. Ling ¹	
	Contents lists available at ScienceDirect y p	Oecologia (2019 https://doi.org/)) 190:665–677 10.1007/s00442-019-04)4445-6	
	Journal of Experimental Marine Biology and Ecology	COMMUN	TY ECOLOGY – (ORIGINAL RESEARCH	
ELSEVIER	journal homepage: www.elsevier.com/locate/jembe				
		Drift-ke	p suppresse	es foraging movement of overgrazing sea urchi	ins
Sea urchin c N. Kriegisch, S	control of macroalgal communities across a productivity gradient .E. Reeves, C.R. Johnson, S.D. Ling*	Drift-ke	p suppresse	es foraging movement of overgrazing sea urchi	ins
Sea urchin o N. Kriegisch, S Esturie https://	control of macroalgal communities across a productivity gradient S.E. Reeves, C.R. Johnson, S.D. Ling*	Drift-ke	b suppresse	es foraging movement of overgrazing sea urchi Journal of Experimental Marine Biology and Ecology 524 (2020) 151292 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe	ins

PREPARED BY TRISTAN GRAHAM, PAUL CARNELL, FLETCHER WARREN-MYERS, REBECCA MORRIS AND STEPHEN SWEARER Percentage cover

Graham et al. unpublished

22 km² of reef habitat

- ~142 million urchins (80g urchin)
- ~11000 tons of urchins

Want ~5000 tons of remaining biomass

Target - ~75 million urchins removed

The Solutions

Natural

Human

The Solutions – Wild Harvest

Sea Urchin Fishery Baseline Management Arrangements

- Developing fishery since 1998
- Last stock assessment was in 2002 (3000 tons, ~25% of current estimates)
- Quota managed fishery. Only quota share holders can remove urchins from outside parks and sanctuaries
- Current fishery quota 60 tons/yr
- Reef productivity and urchin processing are industry limitations
- Fishers don't harvest in barrens

The Solutions – Culling

Heliocidaris erythrogramma (Purple Sea Urchin) Impact Management Plan for Point Cooke Marine Sanctuary

Healthy Parks Healthy People* Centrostephanus rodgersii (Black Spined Sea Urchin) Impact Management Plan for Beware Reef Marine Sanctuary

Heliocidaris erythrogramma (Purple Sea Urchin) Impact Management Plan for Nooramunga Marine and Coastal Park

Purple sea urchin Heliocidaris erythroaramma in urchin barrens. Point Cooke Marine Sanctuary

Black Spined Sea Urchin, Centrostephanus rodgersii, at Beware Reef Marine Sanctuary.

Heliocidaris overgrazing of Posidonia meadow, Sunday Is, Nooramunga M&CP, September 2014

The Solutions – Culling

Beware Reef Marine Sanctuary

- Long history of partnership between PV, citizen scientists, and fishers
- Recently switched to commercial divers (\$20k for 25,000 culled)

The Solutions – Culling

Cost-Benefit

COST BENEFIT ANALYSIS OF SEA URCHIN CULLING PROGRAMS

• Benefit:Cost 1.91 - 6.71

- \$6000 \$22000 per hectare
- \$13 \$48 million to manage urchins in PPB

Carnell et al. 2022

The Solutions – Aquaculture

Solving key industry bottlenecks for sea urchin roe enhancement

by Fletcher Warren-Myers, Stephen Swearer, David Francis Giovanni Turchini and Tim Dempster June 2021 AgniFutures' Emerging Industries

Rationale

Urchins from barrens are an underutilised resource that could be turned into a valuable export commodity

Harvesting for roe enhancement is a potential cost-neutral way to control the overabundance of urchins

The Solutions – Aquaculture

AQUACU	LTURE ENVIRONMENT INTERACTIONS Aquacult Environ Interact	Published August 1	
			ELSEVIE
of gol overa	d: gonad condition bundant sea urchir	ing of an 1	Stocking
**, Stephe	n E. Swearer ² , Symon Dworjar hini ⁵ David S. Francis ⁵ Tim D	1yn ³ , Nina Kriegisch ⁴ , Jempster ¹	quantity aquacult
a the full	init, parta or traiters , this p		Elatahan M

	Contents lists available at ScienceDirect	
	Aquaculture	
ELSEVIER	journal homepage: www.elsevier.com/locate/aquaculture	

Stocking density and rearing environment affect external condition, gonad quantity and gonad grade in onshore sea urchin roe enhancement aquaculture

Fletcher Warren-Myers^{a,b,*}, Stephen E. Swearer^b, Kathy Overton^a, Tim Dempster^a

Received: 27 October 2020	Revised: 31 January 2021	Accepted: 4 February 2021	
DOI: 10.1111/anu.13243			_
ORIGINAL ARTIC	LE	Aquasculture Nutrition	E

The balancing act: Protein, lipid and seaweed dietary levels to maximize gonad quantity in a wild-caught sea urchin

```
Fletcher Warren-Myers ^{1.2} \odot~~|~ Giovanni Turchini ^3~~|~ Stephen E. Swearer ^2~~|~ David Francis ^3 \odot~~|~ Tim Dempster ^1
```

	Contents lists available at ScienceDirect
52.0	Aquaculture
E. S.A.	
ELSEVIER	journal homepage: www.elsevier.com/locate/aquaculture

Algal supplements in formulated feeds: Effects on sea urchin gonad quality

Fletcher Warren-Myers ^{a, b, *}, Stephen E. Swearer ^b, David S. Francis ^c, Giovanni M. Turchini ^c, Kathy Overton ^a, Tim Dempster ^{a, b}

Next-Step Challenges

• Ongoing culling in MSs and MPs with commercial divers

Next-Step Challenges

SER

SER

• Active kelp restoration

RESEARCH ARTICLE

Identifying key factors for transplantation success in the restoration of kelp (*Ecklonia radiata*) beds

Tristan D. J. Graham^{1,2}, Rebecca L. Morris¹, Elisabeth M. A. Strain^{1,3}, Stephen E. Swearer¹

PRACTICAL ARTICLE

Optimizing the initial cultivation stages of kelp *Ecklonia radiata* for restoration

Sarucha Suebsanguan¹, Elisabeth M. A. Strain^{1,2}, Rebecca L. Morris¹, Stephen E. Swearer^{1,3} O

Next-Step Challenges

• 5-ton industry-scale urchin roe conditioning trial

GOLDEN KELP FOREST RECOVERY THROUGH URCHIN HARVEST AND AQUACULTURE IN PORT PHILLIP BAY

Partnership Proposal for Victorian Fisheries Authority

April 2022 | Prepared by: Simon Branigan

• Developing a marine spatial plan for urchin management and kelp restoration

Marine and Coastal Policy

© Copyright The University of Melbourne 2011