BEYOND SINGLE SPECIES RESTORATION: CO-RESTORING KELP FORESTS WITH OYSTER REEFS

LACHLAN MCLEOD DOMINIC MCAFEE & SEAN CONNELL

lachlan.mcleod@adelaide.edu.au lachiemcleod_

FACILITATION & FUNCTION

BioScience

Interactions among Foundation Species and Their **Consequences for Community Organization**, Biodiversity, and Conservation 🚥

Christine Angelini, Andrew H. Altieri, Brian R. Silliman, Mark D. Bertness Author Notes

BioScience, Volume 61, Issue 10, October 2011, Pages 782-789,

Frequency of positive interactions

competitive interaction

Ĵ

requency

Frequency of competitive interactior

Frequency of positive interactions

New England coastlines

wave-protected shorelines

Hydrodynamic stress

wave-exposed headlands

Heavily grazed Nigerian Acacia-tussock communities

FACILITATION & FUNCTION

Heterogeneity within and among co-occurring foundation species increases biodiversity

Mads S. Thomsen^{1,2}, Andrew H. Altieri^{3,4}, Christine Angelini⁴, Melanie J. Bishop⁵, Fabio Bulleri⁶, Roxanne Farhan⁷, Viktoria M. M. Frühling³, Paul E. Gribben ^{®,9}, Seamus B. Harrison³, Qiang He^{® 10⊠}, Moritz Klinghardt¹¹, Joachim Langeneck⁶, Brendan S. Lanham¹⁰, Luca Mondardini¹, Yannick Mulders¹², Semonn Oleksyn⁵, Aaron P. Ramus ¹³, David R. Schiel¹, Tristan Schneider¹¹, Alfonso Siciliano¹, Brian R. Silliman¹⁴, Dan A. Smale ¹⁵, Paul M. South¹⁶, Thomas Wernberg ¹², Stacy Zhang ¹⁴ & Gerhard Zotz^{3,11}

Β.

FACILITATION FOR RESTORATION

Facilitation shifts paradigms and can amplify coastal restoration efforts

Brian R. Silliman^{a,1}, Elizabeth Schrack^a, Qiang He^a, Rebecca Cope^a, Amanda Santoni^a, Tjisse van der Heide^{b,c}, Ralph Jacobi^d, Mike Jacobi^d, and Johan van de Koppel^{c,e}

AN

"Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516; ^bAquatic Ecology and Environmental Biology Group, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands; ^cConservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands; ^dTroop 138, Boy Scouts of America, Tampa Bay, FL 33612; and "Spatial Ecology Department, Royal Netherlands Institute for Sea Research (NIOZ), 4401NT 7 Yerseke, The Netherlands

Edited by Nancy Knowlton, Smithsonian Institution, Washington, DC, and approved September 11, 2015 (received for review August 5, 2015)

RECOVERING AN ECOLOGICAL BASELINE

© The Nature Conservancy

RECOVERING AN ECOLOGICAL BASELINE

Recovering a lost baseline: missing kelp forests from a metropolitan coast

Sean D. Connell^{1,*}, Bayden D. Russell¹, David J. Turner², Scoresby A. Shepherd³, Timothy Kildea⁴, David Miller⁵, Laura Airoldi⁶, Anthony Cheshire⁷

EARLY SUCCESSION

TURF ALGAE

TOPSIDE

UNDERSIDE

Adapted from McAfee et al. 2020

HYPOTHESES

TRANSPLANTED KELP WILL SUPPRESS TURF ALGAE

TRANSPLANTED KELP WILL FACILITATE OYSTER RECRUITMENT

MULTI-SPECIES RESEARCH

Received: 19 May 2020 Accepted: 25 June 2020 DOI: 10.1111/1365-2664.13719	(#
RESEARCH ARTICLE Journal of Applied Ecology	
Multi-species restoration accelerates recovery of extinguished oyster reefs	
Dominic McAfee ^{1,2} Catherine Larkin ¹ Sean D. Connell ^{1,2}	

KELP REDUCED TURF AND FACILITATED OYSTER RECRUITMENT

SMALL EXPERIMENTAL SCALE

KELP FACILITATES OYSTERS

RESEARCH ARTICLE

Ecosystem engineering by a canopy-forming kelp facilitates the recruitment of native oysters

Victor Shelamoff^{1,2}, Cayne Layton¹, Masayuki Tatsumi¹, Matthew J. Cameron¹, Jeffrey T. Wright¹, Craig R. Johnson¹

THE TRANSPLANT METHOD DEVELOPED IN TASMANIA

THE TRANSPLANT METHOD

THE TRANSPLANT METHOD

PRELIMINARY RESULTS KELP SURVIVAL

Days

PRELIMINARY RESULTS KELP SURVIVAL

PRELIMINARY RESULTS TURF SUPPRESSION

PRELIMINARY RESULTS TURF SUPPRESSION

PRELIMINARY RESULTS OYSTER RECRUITMENT

OUTCOMES

TRANSPLANTED KELP CAN FACILITATE OYSTER RECRUITMENT ON A RESTORED REEF

FACILITATION IS FUNDAMENTAL TO MARINE RESTORATION

COULD YOU MOVE A SHADE TO THE RIGHT?

THANK YOU

lachlan.mcleod@adelaide.edu.au lachiemcleod

