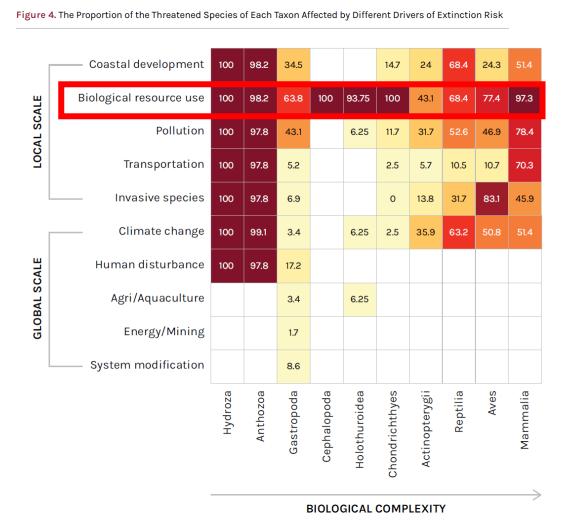
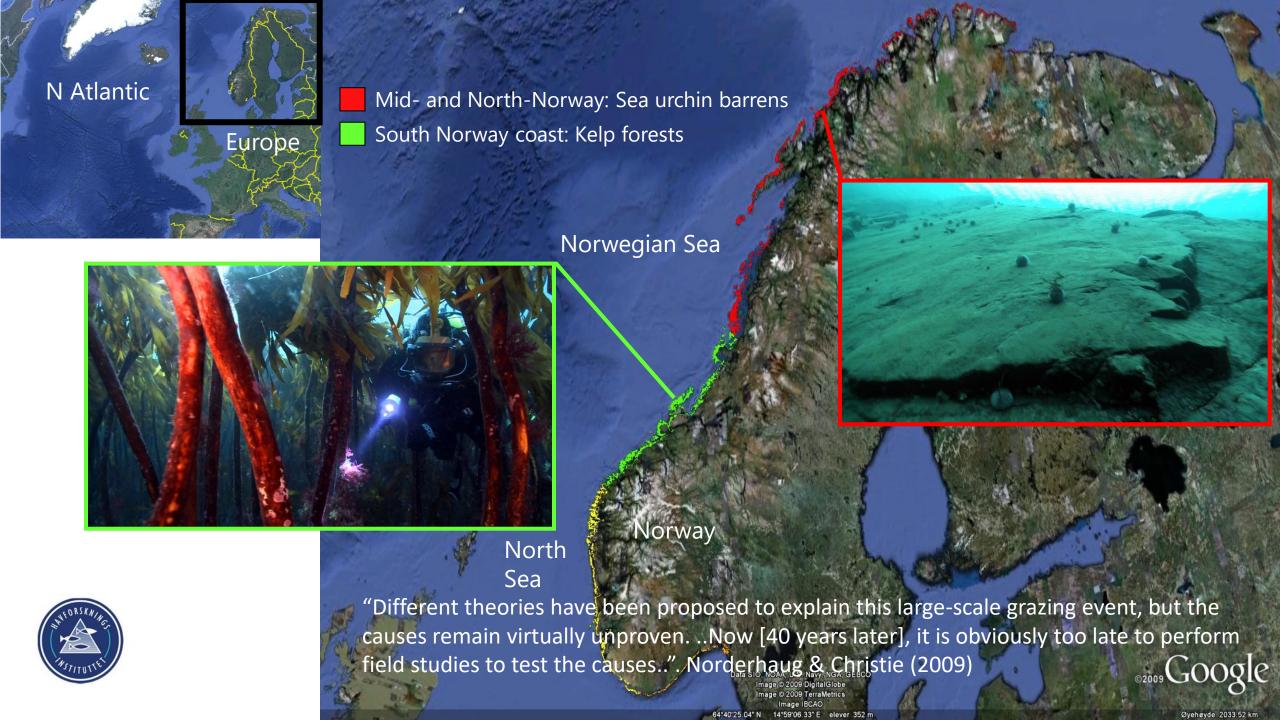
PERSPECTIVE

Overfishing caused the largest sea urchin grazing event observed in the NE Atlantic

Principal Researcher Kjell Magnus Norderhaug Kjell Nedreaas, Mats Huserbråten, Even Moland Institute of Marine Research

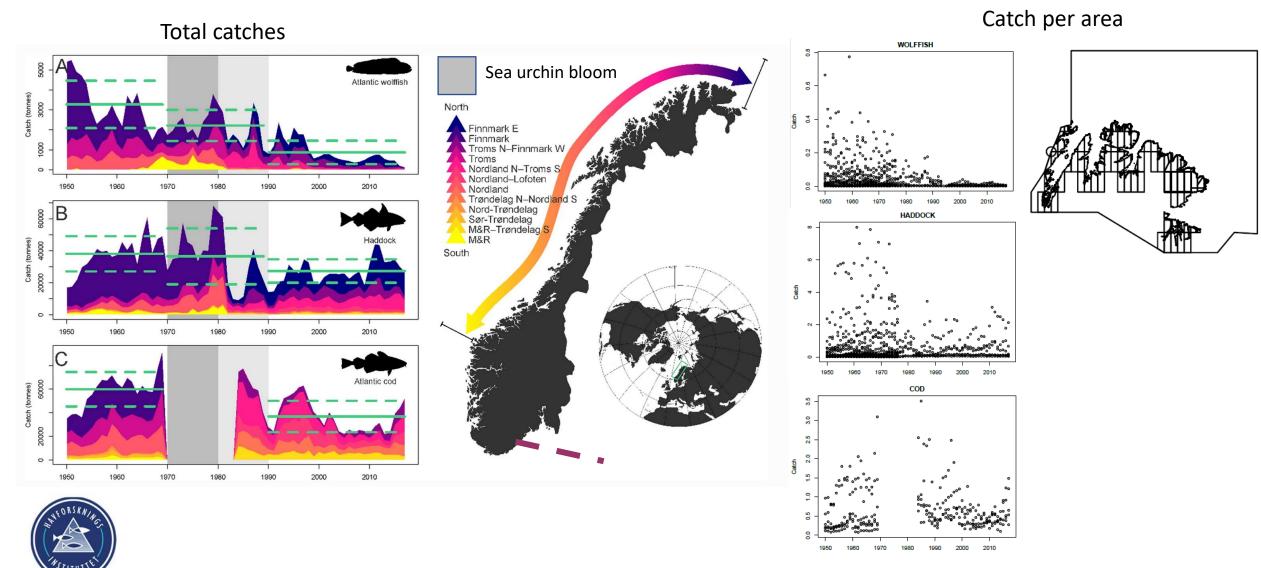


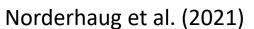
Human threats to marine species and coastal ecosystems


- The major driver of extinction risk is resource use, including by both small- and large-scale fisheries and both targeted and by-catch
- The impact of fishing is often underappreciated and the reference condition unknown because of the global scale of overfishing and shifting baselines after centuries of fishing (Pauly 1995, Costello & Ballantine 2015)

Fishing bills in Fishery Directorate archives

- Paper bills fishermen received when they delivered the catch locally
- A grey data source to fish landings with quit high spatiotemporal resolution


Tabell VIII. Fangstmengden av de ulike sorter fordelt etter ilandbringelsesmåneder 1955. Finnmark.¹ Tonn.


Fiskesorter	Januar	Februar	Mars	April	Mai	Juni	Juli
Lodde			10 395	29 572	1 540		
Kveite	16	32	39	54	138	59	36
Rødspette	6	11	30	9	14	68	36
Blåkveite		5	- 1	40	204	121	6o
Brosme	44	148	5 28	30	244	37	10
Hyse	807	1 500	499	2 881	5 857	2 033	882
Skrei	2 217	7 064	3 695		-		
Loddetorsk		-	2 704	8 992	23 928	11 143	
Annen torsk	i —					2 844	2 419
Sei	7	I	34	89	190	133	1 936
Biprod, av skrei		I 020	465				
Lever av lodde-		}				1	
torsk				676	1 989	712	*****
Feitsild	l —				95	453	26
Småsild		176			2 849	2 025	175
Uer	29	193	135	156	285	172	60
Steinbit	2	29	82	147	478	332	92
Annen fisk m. v.							
Andre biprod		194	356	193	278	391	433
I alt	3 128	10 373	18 467	42 839	38 o89	20 523	6 165
Prosent	1,4		8,5	19,7	17,6	9,5	2,8

Source: Norway Directorate of fisheries

Overfishing of urchin predators

Norderhaug et al. (in prep.)

Modernisation of the coastal fishing fleet during the last century

- Larger boats, (bigger) engines, power block, nylon lines
- Government aid after WW2
- Perceived as traditional and sustainable

Previously unwanted fish ("Ufisk") on the menu

Fish species vulnerable to fishing

Table 1 Fishery target species categorized as principal predators on green sea urchins *S. droebachiensis* ('category 1' according to Planque et al. 2014)

Species	Indices of vulnerability	Gear	Modernization	References
Antlantic wolffish Anarhicas lupus	Internal fertilization, late maturing, low fecundity, paternal care of demersal eggs, homing to feeding and spawning grounds	Longline Bottom trawl ^b Gillnet	ABCD	Eliassen et al. (1981), Keats et al. (1985), Falk-Petersen et al. (2010), Simpson et al. (2013) and Gunnarson et al. (2019)
Spotted wolffish Anarhicas minor	Internal fertilization, late maturing, low fecundity, paternal care of demersal eggs	Longline Bottom trawl ^b Gillnet	ABCD	Eliassen et al. (1981), Gunnarson et al. (2008) and Simpson et al. (2013)
Norwegian coastal cod Gadus morhua	Spawning aggregation, spawning site fidelity, population structure	Gillnet Longline Handline Bottom trawl Danish seine	ABCE	Jorde et al. (2007), Skjaeraasen et al. (2011), Dahle et al. (2018) and Enoksen and Reiss (2018)
NEA haddock Melanogrammus aeglefinus	Spawning aggregation, Population structure ^a	Gillnet Longline Handline Bottom trawl Danish seine	ABCE	Jiang and Jørgensen (1996), Reiss et al. (2009), González-Irusta and Wright (2016) and Tam et al. (2016)

Indices of vulnerability: biological, life cycle or life history attributes with consequences for the species' vulnerability to harvesting. Gear: mode of capture/fishing gear directly or indirectly affecting the target species. Modernization: technological development and demand (1960s–80 s) affecting targeting of the species (see *Notes* at bottom of table)

A = increased engine power; B = increased vessel size; C = introduction of nylon fiber; D = advent of market/demand, E = introduction of the hydraulic net hauler/line hauler

^aSpatial scale of population structure poorly known (Reiss et al. 2009)

^bWolffish are by-caught in bottom trawling, and bottom trawling is detrimental to wolffish habitat

Emerging understanding of population structures

• Historical perception of the coast being seeded with fish eggs from an inexhaustible source from the ocean (Johan Hjort, 1914)

 Molecular methods has changed this perception during the last decades

Many coastal stocks are vulnerable to local fishing due

to limited connectivity

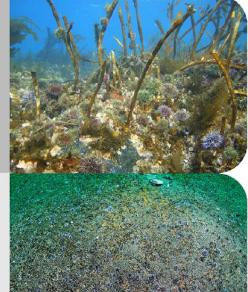
Loss of functional redundancy

A

• Lo

Kelp forest state

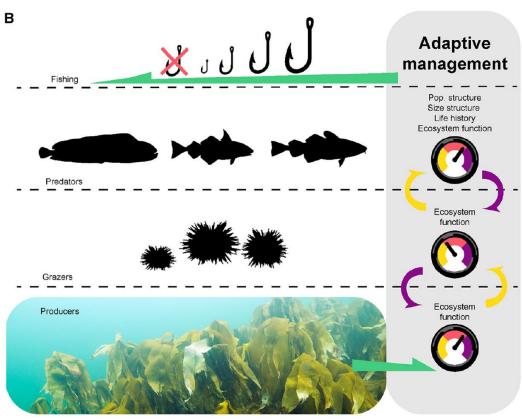
- Local populations of coastal predators in healthy state
- · High functional redundancy
- Urchin abundance controlled by predators
- Kelp domination


1950

Ecosystem overfishing

- Driven by absent regulations, technological development and new market opportunities
- Lowered functional redundancy resulting in grazer bloom

1980


Barren ground state

 Loss of ecosystem function: loss of urchin predation, loss of kelp forests, formation of urchin barrens

«Easy restriction syndrome» Cardinale et al. (2017)

Managing ecosystems

What did we learn?

- Overfishing likely caused a grazer bloom of the sea urchin *Strongylocentrotus droebachiensis* resulting in overgrazing of more than 2 000 km² kelp *Laminaria hyperborea* forest along the Norwegian coast in the 1970s
- Alternative (grey) data sources are important to get the perspective needed to understand human impacts on coastal fish stocks
- We are still underappreciating the effects of fishing and only during the last decades molecular methods have showed us how vulnerable many of these stocks are to harvesting
- A local population dynamics perspective is necessary to account for limited connectivity (avoid «easy restriction syndrome» Cardinale et al. (2017))
- Management actions to combat climate change may fail if we dont take into account fishing. Top predators like cod may have stabilizing properties of coastal ecosystems («super genes», Sodeland et al. 2022).

«At the present it is almost fashinable amongst experts to be concerned for the wellbeing of fish stocks due to increased fishing, use of steam engines and efficient gear. Other experts however are less concerned and convinced that the self-preserving force of nature is strong enough to preclude any destructive effects by humans» - Arthur Feddersens book The Ocean – Its discovery and conquest, 1903

